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Abstract The incidence of heart failure with preserved ejection fraction (HFpEF) increases
with the ageing of populations. This study aimed to explore ageing-associated gene signatures
in HFpEF to develop new diagnostic biomarkers and provide new insights into the underlying
mechanisms of HFpEF. Mice were subjected to a high-fat diet combined with L-NG-nitroargi-
nine methyl ester (L-NAME) to induce HFpEF, and next-generation sequencing was performed
with HFpEF hearts. Additionally, separate datasets were acquired from the Gene Expression
Omnibus (GEO) database. The differentially expressed genes (DEGs) were used to identify
ageing-related DEGs. Support vector machine, random forest, and least absolute shrinkage
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and selection operator algorithms were employed to identify potential diagnostic genes from
ageing-related DEGs. The diagnostic value was assessed using a nomogram and receiver oper-
ating characteristic curve. The gene and related protein expression were verified by reverse
transcription PCR and western blotting. The immune cell infiltration in hearts was analysed us-
ing the single-sample gene-set enrichment analysis algorithm. The results showed that the
merged HFpEF datasets comprised 103 genes, of which 15 ageing-related DEGs were further
screened in. The ageing-related DEGs were primarily associated with immune and metabolism
regulation. AGTR1a, NR3C1, and PRKAB1 were selected for nomogram construction and ma-
chine learning-based diagnostic value, displaying strong diagnostic potential. Additionally,
ageing scores were established based on nine key DEGs, revealing noteworthy differences in
immune cell infiltration across HFpEF subtypes. In summary, those results highlight the signif-
icance of immune dysfunction in HFpEF. Furthermore, ageing-related DEGs might serve as
promising prognostic and predictive biomarkers for HFpEF.
ª 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co.,
Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
Introduction

Epidemiological investigations indicate that about 50% of
the heart failure population has a preserved or normal
ejection fraction, namely heart failure with preserved
ejection fraction (HFpEF).1,2 Due to the complexities and
heterogeneity, the pathophysiological mechanisms under-
lying HFpEF are still far from elucidation. Consequently, the
specific diagnostic biomarkers and evidence-based clinical
therapies for HFpEF remain scarce.

Ageing has been identified as a risk factor for HFpEF.3

Various studies, including ours, have demonstrated that
ageing shares several features, such as insulin resistance,
obesity, inflammation, and metabolic dysfunction with
HFpEF.4e6 A previous study demonstrated that a combina-
tion of a high-fat diet, desoxycorticosterone pivalate, and
ageing recapitulated the typical pathological phenotype of
HFpEF,3 further supporting that ageing might exhibit some
similar pathophysiological mechanisms as HFpEF. Large-
scale next-generation sequencing has revealed the genomic
landscape of HFpEF and ageing. As similar pathophysiolog-
ical mechanisms might be associated with genes with
similar functions, an integrated analysis of the genome-
wide expression profiles of HFpEF and ageing might offer
novel insights into the pathogenesis of HFpEF. Moreover,
based on multiple pieces of evidence, immune cells play
crucial roles both in the physiological process of HFpEF and
ageing.7e9 Therefore, investigating immune infiltration in
HFpEF hearts might help understand the pathogenesis of
HFpEF.

Machine learning has become a popular approach for
uncovering underlying mechanisms, identifying relevant
biomarker features, and finding therapeutic targets for
various diseases.10e12 In this study, differentially expressed
genes (DEGs) in HFpEF were first identified and an ageing
score (A-score) model based on ageing-related DEGs
(ARDEGsARDEGs) was established via machine learning.
Next, different molecular subtypes of HFpEF were defined
and the diagnostic value of the genetic panel for HFpEF was
evaluated. Finally, the significant roles of immune cells in
the distinct molecular subtypes of HFpEF were explored to
offer new insights into the immune molecular mechanisms of
HFpEF.

Methods

Animal experiments

In accordance with the National Institutes of Health
Guidelines for the Use of Laboratory Animals, animal ex-
periments were conducted after obtaining approval from
The Chongqing Medical University Committee on Animal
Care. Eight-week-old male C57BL/6J mice were adminis-
tered a 60% high-fat diet and 0.5 g/L L-NG-nitroarginine
methyl ester (L-NAME) through drinking water to induce
HFpEF as previously described.4 The mice were main-
tained in a standard environment with free access to food
and water under a 12-h/12-h light/dark cycle. At the end
of the experiments, echocardiography was performed to
assess cardiac function, and heart samples and plasma
were collected and stored in liquid nitrogen until further
analysis.

Data collection and pre-processing

RNA sequencing analysis was conducted by Applied Protein
Technology Co., Ltd., Shanghai, China and designated as
the heart failure database. The distribution patterns be-
tween HFpEF and control mice were visualised using prin-
cipal component analysis. Additionally, two more
expression profile datasets, namely GSE19415113 and
GSE184120,14 were obtained from the Gene Expression
Omnibus database (http://www.ncbi.nlm.nih.gov/geo/).
Further details of the collected datasets are presented in
Table S1. Then “limma” R package was used to correct the
batch effect and the “Deseq200 R package was used to
analyse DEGs (Fig. S1).

Moreover, the GeneCards database was used to search
for ageing-related genes using the keyword “ageing”.15 The
obtained list of the ageing-related genes was further ana-
lysed after converting them with homologene packages in
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R. Additional information about the ageing-related genes is
presented in Table S2.

Identification of ARDEGs

Common DEGs were obtained by intersecting the DEGs from
the heart failure, GSE194151, and GSE184120 datasets. Next,
the ARDEGs were identified by intersecting the common
DEGs with ageing-related genes. Subsequently, Gene
Ontology (GO) and Kyoto Encyclopaedia of Genes and Ge-
nomes (KEGG) pathway enrichment analyses of ARDEGs were
conducted using the “clusterProfiler” package, considering
adjusted p-value < 0.05 and false discovery rate-adjusted p-
value (q value) < 0.05 as significant. Gene set enrichment
analysis (GSEA) and gene set variation analysis (GSVA) were
also performed to investigate the differences between
HFpEF and control samples using the Molecular Signatures
Database-derived gene sets “c2.cp.kegg.v7.4.symbols.gmt”
and “c2.cp.all.v2022.1.Hs.symbols.gmt”.16 Enriched path-
ways with adjusted p-value <0.05 and false discovery rate-
adjusted p-value (q value) < 0.05 for GSEA and p-value <
0.05 and |log Fold Change| > 0.50 for GSVA were considered
statistically significant.

Western blotting

Heart tissues were homogenized in lysis buffer with a pro-
tease inhibitor cocktail (Beyotime, Jiangsu, China). After
centrifugation at 12,000 g and 4 �C, the supernatant was
collected. The protein concertation was measured with a
BCA assay. Then samples were mixed with loading buffer
and boiled for 10 min. After separating with SDS-PAGE gels,
the protein was transferred to the PVDF membrane and
then blocked with non-fat milk. Then the membranes were
probed with primary antibodies at 4 �C overnight and then
corresponding secondary antibodies at room temperature
for 90 min. Blots were visualized via horseradish peroxidase
assay and images were quantified using Image J.

Semi-quantitative real-time PCR

Total RNA was extracted from heart tissues with TRIzol
reagent (TaKaRa, Shiga, Japan). 1000 ng RNA were reverse-
transcribed into cDNA with PrimeScript RT Master Mxia and
then real-time PCR were performed with particular primers
and 18 S rRNA was used as the housekeeping gene. The
results were presented as a fold change to the control.

Diagnostic model construction with ARDEGs via
machine learning

The support vector machine (SVM), random forest (RF),
and least absolute shrinkage and selection operator
(LASSO) algorithms were employed independently to
identify the diagnostic genes from the ARDEGs. RF analysis
was performed using the R package “randomForest”17 with
the parameters “set.seed (234)” and “ntree Z 100000 and
IðXxiÞZ � log2pðxiÞ. LASSO was performed using the R
package “glmnet” with parameters “set.seed (500)” and
“family Z binomial”, based on the ARDEGs in the
logistic regression model.18 The R package “rm” was
used to construct the nomogram19 and visualize the
interactive relationship of ARDEGs in the diagnostic
model with the riskScoreZ

P
iCoefficient ðhub geneiÞ �

messenegr RNA expression ðhub geneiÞ. The “ggDCA”
package20 was used to assess the accuracy and the
discriminative ability of the diagnostic model based on
ARDEGs. Subsequently, the ARDEGs identified SVM, RF, and
LASSO models were intersected to obtain the common
ARDEGs. The efficacy of common ARDEGs in diagnosing
HFpEF was evaluated by the receiver operating charac-
teristic curve.

HFpEF subtype identification based on the
diagnostic model of ARDEGs

Different HFpEF subtypes (cluster 1/cluster 2) in the
GSE194151 dataset were identified based on the expression
of ARDEGs using the “ConsensusClusterPlus” package21 in R.
The parameters used for this analysis were maxK Z 8,
reps Z 50, pItem Z 0.8, pFeature Z 1, clusterAlg Z pam,
and distance Z spearman. The “Deseq2” package was used
to determine the DEGs between cluster 1 and cluster 2. The
DEGs were selected based on the criteria of |log Fold
Change| >0.5 and adjusted p-value <0.05 for further
analysis. The results were visualized by plotting volcanoes
using the “ggplot2” package in R.

Construction of A-scores

The DEGs and ARDEGs in the GSE194151 dataset were
intersected to obtain the screened-in DEGs. Phenotypic
scoring calculations were performed to identify the po-
tential mechanism of action and related biological char-
acteristics and pathways of the screened-in DEGs in
HFpEF. For this purpose, the single-sample GSEA (ssGSEA)
algorithm was used to quantify the relative abundance of
each gene in the database. The “GSVA” package22 in R was
used to calculate the ageing phenotypic scores (A-scores)
of each sample in the GSE194151 dataset based on the DEG
expression to identify the potential mechanism of action
of the common ARDEGs in HFpEF, as well as related bio-
logical features and pathways. The A-scores were grouped
by median to determine the diagnostic effect of A-scores
on the HFpEF model via the receiver operating charac-
teristic curve.

Immune cell infiltration and correlation analysis

The ssGSEA algorithm was used to quantify the relative
abundance of the infiltration of each immune cell.23 The
enrichment score of the samples in the GSE194151 dataset
was calculated using the ssGSEA algorithm in the “GSVA”
package. Boxplots were used to display the differences in
infiltration abundance of 28 immune cells between the high
and low risk score groups determined by LASSO regression,
different HFpEF subtypes (cluster 1/cluster 2), and high/
low A-scores. Additionally, the correlations between
different immune cells within the high/low risk score
groups, cluster 1/cluster 2, and high/low A-scores were
calculated using Spearman’s correlation and visualized
using the “ggplot2” R package.



Figure 1 Identification of differentially expressed genes (DEGs) and ageing-related DEGs (ARDEGs). (AeC) The volcano plot of
the DEGs in our dataset (heart failure dataset) (A), GSE194151 dataset (B), and GSE184120 dataset (C). (D) Identification of the
common DEGs. (E) Identification of the ARDEGs. (FeH) Heatmap of ARDEGs in the heart failure (F), GSE194151 (G), and GSE184120
(H) datasets.
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The regulatory network of immune cells and
ARDEGs

The gene expression matrix of GSE194151 dataset was
combined to calculate the correlation between immune
cells and ARDEGs in different groups to analyze the
regulatory network of ARDEG expression and immune cells.
The results were visualized using the “ggplot2” R package.
In addition, the peripheral blood mononuclear cell data
from HFpEF patients (GSE223527) were downloaded to
investigate the ARDEG expression in different immune
cells.
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Statistical analysis

R (Version 4.2.2) was used for statistical analyses. The
Wilcoxon test was used to evaluate the expression differ-
ences between the two groups. The KruskaleWallis test was
used for comparisons involving three or more groups. The
logistic regression algorithm was used to develop the pre-
dictive model, and the diagnostic accuracy of the model
was measured using a receiver operating characteristic
curve. Unless specified, Spearman correlation analysis was
used to calculate the correlation coefficient between
different variables, and all statistical p-values were two-
tailed. Statistical significance was set at p < 0.05.
Results

High-fat diet and L-NAME induced HFpEF phenotype
in mice

As shown in Figure S2AeC, the combination of a high-fat
diet and L-NAME showed no significant alteration in left
ventricular systolic function (Fig. S2B) but significantly
reduced the diastolic dysfunction (Fig. S2C) and exercise
tolerance (Fig. S2D) in mice. Moreover, the lung edema
(Fig. S2E) and brain natriuretic peptide (Fig. S2F) levels
significantly increased in mice. Then, hearts were excised
for bulk RNA sequencing. The principal component analysis
showed pronounced discrimination between hearts from
two groups (Fig. S3A) and the DEGs were displayed in
Figure S3B. Moreover, the KEGG analysis revealed that the
DEGs were primarily enriched in the metabolism pathway,
consistent with the clinical features of HFpEF (Fig. S3C).
Those results showed that the combination of a high-fat
diet and L-NAME successfully induced a periclinal HFpEF
mouse model.

Identification of DEGs and ARDEGs

Based on our dataset, 2345 genes were significantly up-
regulated and 1992 genes were significantly down-regu-
lated in HFpEF hearts compared with control hearts
(Fig. 1A). Similarly, the GSE194151 dataset revealed 975
significantly up-regulated genes and 962 significantly
down-regulated genes in the HFpEF group compared with
the control group (Fig. 1B). Furthermore, the GSE184120
dataset depicted 1997 up-regulated genes and 1388 down-
regulated genes in the HFpEF group compared with the
control group (Fig. 1C). These DEGs were intersected to
identify the common DEGs, which resulted in 103 genes, as
illustrated in Figure 1D.

The common DEGs and ageing-related genes were
intersected to identify ARDEGs, which resulted in the
identification of 15 ARDEGs (Fig. 1E). The expression of
ARDEGs in the heart failure (Fig. 1F), GSE194151 (Fig. 1G),
and GSE184120 (Fig. 1H) datasets were visualized using
heatmap. GO enrichment analysis revealed that ARDEGs
were primarily enriched in various processes such as
“striated muscle tissue development”, “superoxide
metabolic process”, “collagen trimer”, and “ATP hydro-
lysis activity” (Fig. S4AeD). Additionally, the KEGG
analysis revealed that ARDEGs were primarily enriched in
“coronavirus disease 2019”, “antigen processing and pre-
sentation”, “complement and coagulation cascades”,
“apelin signaling pathway”, and “lipid and atherosclerosis
pathway” (Fig. S4E, F).

GSEA (Fig. S5) and GSVA (Fig. S6) were conducted on the
GSE194151 dataset, and the results indicated that the
ARDEGs were primarily associated with immune response
and metabolic pathways, both of which play crucial roles in
the pathogenesis of HFpEF and ageing.

Moreover, with a single-cell dataset from HFpEF pa-
tients (GSE223527), we identified six different types of
immune cells in peripheral blood mononuclear cells as
shown in Figure S7A and B. Further analysis revealed that
the proportion of neutrophils and CD8 T cells in HFpEF
patients was significantly increased, however, the pro-
portion of CD4 T cells decreased (Fig. S7C). Together with
that, the ARDEGs were expressed in all identified immune
cells, especially in neutrophils (Fig. S7D). Those data all
suggested that the ARDEGs might play an important role in
immune response in HFpEF.
Diagnostic biomarker identification and verification
via machine learning

The forest plot depicting the 15 ARDEGs is presented in
Figure 2A. Using the SVM algorithm, it was found that the
SVM model had the highest accuracy when 12 genes were
used (Fig. 2B, C). Subsequently, the RF algorithm was
employed to extract potential diagnostic biomarkers
(Fig. 2D, E). Using the LASSO regression algorithm, six po-
tential candidate biomarkers were identified, as presented
in Figure 2F and G. The nomogram indicated the impor-
tance of each gene in the ARDEG diagnostic model
(Fig. 2H). The accuracy of the ARDEG diagnostic model was
evaluated using the calibration analysis, which showed high
accuracy in diagnosing diseases, as demonstrated in Figure
2I and J. Furthermore, the area under the receiver oper-
ating characteristic curve (AUC) value in the GSE194151
dataset was 0.996, indicating the strong diagnostic per-
formance of the ARDEG diagnostic model for HFpEF
(Fig. 2K). Finally, the intersection of genes from the SVM,
RF, and LASSO regression was visualized using a Venn dia-
gram (Fig. 2L). Five common ARDEGs, namely angiotensin II
receptor type 1 a (AGTR1a), cell division cycle and
apoptosis regulator 1 (CCAR1), interleukin receptor 10
subunit alpha (Il10RA), nuclear receptor subfamily 3 group
C member 1 (NR3C1), and 50-adenosine monophosphate-
activated protein kinase subunit beta-1 (PRKAB1), were
identified for the final validation.

The specific expression levels of the five common ARDEGs
were compared between HFpEF and control groups using the
Wilcoxon rank sum test in heart failure (Fig. 3A), GSE194151
(Fig. 3B), and GSE184120 (Fig. 3C) datasets. AGTR1a, NR3C1,
and PRKAB1 exhibited significant statistical differences in all
the three datasets. The receiver operating characteristic
curves were then constructed to assess the diagnostic
specificity and sensitivity of each gene in the three datasets.
In the heart failure dataset (Fig. 3DeF), AGTR1a (AUC:
0.861), NR3C1 (AUC: 1.000), and PRKAB1 (AUC: 0.944)
demonstrated significant diagnostic value. In the GSE184120



Figure 2 Diagnostic biomarker identification and verification based on ARDEGs via machine learning. (A) The forest plot illus-
trating ARDEG expression via the logistic regression analysis. (B, C) The number of genes with the lowest error rate (B) and the
highest accuracy rate (C) in the SVM model. (D, E) Random forest analysis was conducted to analyse the ARDEGs and extract
potential diagnostic biomarkers. (F, G) Biomarker screening via LASSO regression analysis. (HeK) The visible nomogram for
diagnosis (H), and the diagnostic value evaluation (IeK). (L) The Venn diagram showing five candidate diagnostic genes identified
via SVM, logic-LASSO, and random forest algorithms. SVM, support vector machine; ARDEGs, ageing-related differentially expressed
genes; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; AUC, the area under the
ROC curve; DCA, decision curve analysis.

6 G. Li et al.
dataset (Fig. 3GeI), AGTR1a (AUC: 0.836), NR3C1 (AUC:
0.831), and PRKAB1 (AUC: 0.796) showed diagnostic value. In
the GSE184120 dataset (Fig. 3JeL), AGTR1a (AUC: 1.000),
NR3C1 (AUC: 0.938), and PRKAB1 (AUC: 1.000) exhibited high
diagnostic value for HFpEF.
Moreover, we verified the mRNA expression of Agtr1a,
Nr3c1, and Prkab1 in HFpEF hearts. Results showed a
significantly increased mRNA expression of Nr3c1, but a
reduced mRNA expression of Agtr1a and Prkab1 in
HFpEF hearts (Fig. 4AeC). In addition, we measured the



Figure 3 The expression of five candidate diagnostic genes and the verification of diagnostic specificity and sensitivity. (AeC)
The expression of candidate diagnostic genes in heart failure (A), GSE194151 (B), and GSE184120 datasets (C). (DeL) The ROC curve
of each candidate gene (Agtr1a, NR3C1, and PRKAB1) in the heart failure (DeF), GSE194151 (GeI), and GSE184120 datasets (JeL).
Not significant, p � 0.05; *p < 0.05, **p < 0.01, ***p < 0.001. HFpEF, heart failure with preserved ejection fraction; ROC, receiver
operating characteristic; AUC, the area under the curve.
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protein level encoded by those three genes in HFpEF hearts.
Results showed that AGTR1 protein level reduced, NR3C1
protein level increased, and the protein levels of AMPKb had
no significant change in HFpEF hearts (Fig. 4DeG).
Collectively, these findings suggested that all three
candidate genes could serve as potential diagnostic
markers for HFpEF, and AGTR1 and NR3C1 might be involved
in the progression of HFpEF.



Figure 4 The mRNA and protein levels of Agtr1, Nr3c1, and Prkab1 in hearts from HFpEF mice were verified. (AeC) The mRNA
expression of Agtr1, Nr3c1, and Prkab1 in HFpEF hearts. (DeG) The levels of protein encoded by Agtr1, Nr3c1, and Prkab1 in HFpEF
hearts. Not significant, p � 0.05; *p < 0.05, **p < 0.01. HFpEF, heart failure with preserved ejection fraction.
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Immune cell infiltration analysis based on the
ARDEG diagnostic model

The ssGSEA method was used to explore the immune cell
infiltration in HFpEF based on the ARDEG diagnostic model.
First, HFpEF samples in the GSE194151 dataset were cate-
gorized into high and low risk score groups based on the risk
score value in the ARDEG diagnostic model. Then a bar plot
was used to visualize the 28 immune cell types in the high
and low risk score groups. The results revealed that only
the T follicular helper cell level was significantly higher in
the low risk score group than high risk score group (Fig. 5A).
Additionally, the correlation between T follicular helper
cell infiltration and ARDEGs was analyzed using the
Spearman algorithm (Fig. 5BeP). The findings revealed that
growth/differentiation factor 15 (GDF15) was positively
correlated with the level of T follicular helper cell infil-
tration (Fig. 5H).
HFpEF subtype identification based on the ARDEG
diagnostic model

The potential of ARDEGs as diagnostic markers for HFpEF
was explored and consensus clustering was performed
using the “ConsensusClusterPlus” algorithm on the
GSE194151 dataset based on the ARDEG diagnostic model.
The analysis revealed two distinct HFpEF subtypes (cluster
1 and cluster 2) (Fig. 6A), which were identified based on
consensus cumulative distribution function (Fig. 6B) and
delta area plots (Fig. 6C). A pronounced discrimination
was observed between cluster 1 and cluster 2 (Fig. 6D).
The expression of ARDEGs was significantly different be-
tween the two clusters, except for chromodomain helicase
deoxyribonucleic acid binding protein 7 (CHD7) and GDF15
(Fig. 6E). A total of 13,558 DEGs, including 7190 up-regu-
lated and 6368 down-regulated genes, were identified
(Fig. 6F). Venn diagram analysis revealed that nine key
DEGs, namely AGTR1a, centromere protein F (CENPF),
stomatin (STOM), NR3C1, GDF15, CHD7, complement C1qA
chain (C1QA), heat-shock protein, 90-KD, alpha, class B,
member 1 (HSP90AB1), and complement C1qC chain
(C1QC), overlapped with ARDEGs (Fig. 6G). The heatmap
indicated that the expression of these nine key DEGs was
significantly different between cluster 1 and cluster 2
(Fig. 6H), supporting the effectiveness of the subtype
identification on HFpEF based on the ARDEG diagnostic
model.

Immune cell infiltration analysis based on HFpEF
subtypes

The ssGSEA algorithm was used to investigate the differ-
ences in immune cell infiltration between cluster 1 and
cluster 2. The proportions of 24 types of immune cells were
compared between the two clusters using bar plots, and the
results revealed significant differences (Fig. 7A). Specif-
ically, cluster 1 had higher levels of activated B cells,
activated CD4 T cells, activated dendritic cells, CD56 bright
natural killer cells, central memory CD4 T cells, effector



Figure 5 Immune cell infiltration analysis between the low risk score and high risk score groups based on the ARDEG diagnostic
model. (A) The proportion of 28 immune cell types in the low risk score group and high risk score group visualized by the bar plot.
(BeP) The correlation of T follicular helper cell infiltration and ARDEGs was analyzed via the Spearman algorithm. Not significant,
p � 0.05; *p < 0.05, **p < 0.01, ***p < 0.001. HFpEF, heart failure with preserved ejection fraction; ssGSEA, single-sample gene set
enrichment analysis; ARDEG, ageing-related differentially expressed gene.
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memory CD4 T cells, effector memory CD8 T cells, eosino-
phils, immature B cells, macrophages, mast cells, myeloid-
derived suppressor cells, memory B cells, natural killer T
cells, plasmacytoid dendritic cells, and type 17 T helper
cells but lower levels of CD56 dim natural killer cells,
gamma delta T cells, immature dendritic cells, monocytes,
natural killer cells, neutrophils, type 1 T helper cells, and
type 2 T helper cells (Fig. 7A). In cluster 1, there was a high
positive correlation between immature dendritic cells and
plasmacytoid dendritic cells (Fig. 7B), while in cluster 2,



Figure 6 HFpEF subtype identification based on the ARDEG diagnostic model. (A) The heatmap exhibiting the two HFpEF clusters
with k Z 2 based on the ARDEGs. (B) Cumulative distribution function (CDF) for k Z 2e9. (C) Delta diagram illustrating the
variations of the area under the CDF curve for kZ 2e9. (D) PCA based on the results of the consensus clustering analysis. (E) ARDEG
expressions in two different HFpEF clusters. (F) Volcano plot of the DEGs in two different HFpEF clusters. (G) Venn diagram of nine
key DEGs identified by intersecting the DEGs and ARDEGs. (H) The heatmap exhibiting expression of the key DEGs in two different
HFpEF clusters. HFpEF, heart failure with preserved ejection fraction; CDF, cumulative distribution function; PCA, principal
component analysis; DEGs, differentially expressed genes; ARDEGs, ageing-related DEGs.
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the highest positive correlation was observed between
effector memory CD4 T cells and effector memory CD8 T
cells (Fig. 7C). Additionally, correlation analysis revealed
significant positive correlations between the content of
immune infiltration and the key DEGs in cluster 1 (Fig. 7D)
and cluster 2 (Fig. 7E).
Construction of A-scores

ssGSEA was used to construct A-scores based on the nine
key DEGs. The receiver operating characteristic curve
analysis revealed that the AUC value was 1.000, indicating
high diagnostic specificity and sensitivity of A-scores for



Figure 7 Immune cell infiltration analysis between two different HFpEF clusters. (A) The proportion of 28 immune cell types in
two different HFpEF clusters (cluster 1 and cluster 2). (B, C) Correlation of 24 immune cell types with a significantly different
infiltration abundance in cluster 1 (B) and cluster 2 (C). (D, E) The correlation of 24 immune cell types with a significantly different
infiltration abundance and key DEGs in cluster 1 (D) and cluster 2 (E). HFpEF, heart failure with preserved ejection fraction; ssGSEA,
single-sample gene set enrichment analysis; DEGs, differentially expressed genes.
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HFpEF in the GSE194151 dataset (Fig. 8A). Based on A-
scores, HFpEF samples were categorized into high and low
A-score groups. The bar plot indicated that the high A-
score group had a higher expression of CENPF, STOM,
C1QA, HSP90AB1, and C1QC and a lower expression of
AGTR1 and CENPF (Fig. 8B). Further, the diagnostic spec-
ificity and sensitivity of each gene to different HFpEF
subtypes based on A-scores were evaluated using the
receiver operating characteristic curve (Fig. 8CeK). The
AUC values for AGTR1, CENPF, STOM, NR3C1, GDF15,
CHD7, C1QA, HSP90AB1, and C1QC were 0.857, 0.911,
0.857, 0.714, 0.536, 0.804, 0.911, 0.946, and 0.893,
respectively. These results suggested that CENPF, C1QA,
and HSP90AB1 have a high diagnostic value for HFpEF
subtypes based on A-scores.
Immune cell infiltration analysis based on A-scores

The ssGSEA algorithm was used to investigate the differ-
ence in immune cell infiltration between the high and low
A-score groups. Results revealed that the high and low A-
score groups exhibited significant differences in the pro-
portion of 24 types of immune cells (Fig. 9A). The bar plot
revealed that the high A-score group had higher levels of
activated B cells, activated CD4 T cells, activated



Figure 8 Construction of A-scores and the verification of diagnostic specificity and sensitivity. (A) The ROC curve of A-scores for
the GSE194151 dataset. (B) The expression of key DEGs in the high and low A-score groups. (CeK) The ROC curve of each key DEG
shows the diagnostic value for the HFpEF subtypes based on the A-scores. Not significant, p � 0.05; *p < 0.05, **p < 0.01,
***p < 0.001. HFpEF, heart failure with preserved ejection fraction; DEGs, differentially expressed genes; A-scores, ageing scores;
KM, KaplaneMeier; ROC, receiver operating characteristic; AUC, area under the ROC curve.
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dendritic cells, CD56 bright natural killer cells, central
memory CD4 T cells, effector memory CD4 T cells, effector
memory CD8 T cells, eosinophils, immature B cells, mast
cells, natural killer T cells, plasmacytoid dendritic cells,
and type 17 T helper cells and lower levels of CD56 dim
natural killer cells, gamma delta T cells, macrophages,
neutrophils, and type 2 T helper cell (Fig. 9A). The cor-
relation analysis revealed that the highest correlation in



Figure 9 Immune cell infiltration analysis between the high and low A-score groups. (A) The proportion of 28 immune cell types
in the high and low A-score groups. (B, C) Correlation of 18 immune cell types with a significantly different infiltration abundance in
the low (B) and high (C) A-score groups. (D, E) The correlation of 18 immune cell types with a significantly different infiltration
abundance and key DEGs in the high and low A-score groups. Not significant, p � 0.05; *p < 0.05, **p < 0.01, ***p < 0.001. HFpEF,
heart failure with preserved ejection fraction; ssGSEA, single-sample gene set enrichment analysis; A-score, ageing score; DEGs,
differentially expressed genes.
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the low A-score group was observed between effector
memory CD4 T cells and effector memory CD8 T cells, as
well as between natural killer T cells and immature B cells
(Fig. 9B). However, in the high A-score group, most im-
mune cells exhibited a negative correlation, except for
effector memory CD4 T cells and eosinophils (Fig. 9C).
Furthermore, the correlation analysis revealed a signifi-
cant correlation between the content of immune infiltra-
tion and the key DEGs. In the low A-score group, a positive
correlation was predominant (Fig. 9D). In contrast, in the
high A-score group, only nine immune cell types showed a
correlation with the key DEGs, and a positive correlation
was predominant (Fig. 9E).

Discussion

HFpEF is a complex clinical syndrome with high morbidity
and mortality24 and has been suggested to be more common
among the elderly population.25 However, the molecular
mechanisms underlying HFpEF are not yet fully understood
due to the lack of pro-clinic models. Recently, researchers
have developed an HFpEF model by combining a high-fat
diet and an endothelial nitric oxide synthase inhibitor L-
NAME, which mimics the typical pathological features of
HFpEF in mice,26,27 providing a powerful tool for the
pathophysiological research of HFpEF. Additionally, next-
generation sequencing has been widely used to explore the
mechanisms of HFpEF and has provided valuable informa-
tion that might aid in identifying diagnostic and therapeutic
targets for HFpEF.

HFpEF shares some pathological features with ageing.28

Therefore, we identify common DEGs between ageing and
HFpEF via integrated bioinformatics analysis and machine
learning methods. Five common ARDEGs (AGTR1a, CCAR1,
Il10RA, NR3C1, and PRKAB1) were identified. Among them,
AGTR1a, CCAR1, Il10RA, and NR3C1 are all involved in im-
mune regulation, indicating the vital role of immune
dysfunction in the pathophysiological process of HFpEF.
AGTR1 encodes AT1 receptor A and has been reported to be
associated with cellular ageing, inflammation, and hyper-
tension according to previous studies.29e31 Moreover,
increased AGTR1a expression is associated with an ageing-
like phenotype and higher mortality rates in mice with
myocardial infarction,32,33 further confirming the important
role of AGTR1a both in ageing and cardiovascular diseases.
Additionally, PRKAB1 encodes the non-catalytic subunit of
adenosine monophosphate-activated protein kinase, which
is a key molecular in regulating fatty acid and blood glucose
utilization.34,35 As metabolic dysfunction is a feature of
ageing and HFpEF, AGTR1 has an important role in the
development of HFpEF. Notably, the expression of ARDEGs
in sinoatrial node tissue (GSE184120) differed from that in
heart tissue (GSE194151 and our heart failure dataset).
That difference suggests that sinoatrial node tissue and
heart tissue undergo different pathophysiological mecha-
nisms in HFpEF, although further studies are necessary to
confirm this finding.

In our previous study,4 it was observed that metabolic
dysfunction and oxidative stress were implicated in the
progression of HFpEF, both of which are associated with
ageing.36,37 In the present study, through bioinformatics
analysis, it was identified that the ARDEGs in HFpEF were
enriched in “superoxide metabolic process” and “ATP hy-
drolysis activity”, consistent with our earlier findings.
Additionally, inflammation is also a main feature of
HFpEF,38,39 and it was observed that ARDEGs were enriched
in “antigen processing and presentation”, “complement
and coagulation cascades”, and “apelin signaling
pathway”, further confirming the crucial roles of immune
response in ageing and HFpEF. Consequently, immune cell
infiltration analysis showed that the T follicular helper cell
level was significantly higher in the low risk score group
than in the high risk score group. T follicular helper cells, as
a specialized subset of CD4þ T cells, play crucial roles in
regulating antibody responses and providing protection
against foreign pathogens.40 These findings suggest that
increased T follicular helper cells may alleviate inflamma-
tion induced by foreign pathogens and thus protect against
HFpEF. However, further research is necessary to confirm
this hypothesis.

The receiver operating characteristic curve analysis
revealed that AGTR1a, NR3C1, and PRKAB1 exhibited high
diagnostic value for HFpEF, and CENPF, C1QA, and
HSP90AB1 had a high diagnostic potential for HFpEF sub-
types based on A-scores. Additionally, HFpEF was stratified
into high and low A-score groups and immune cell infiltra-
tion analysis revealed significant differences in the pro-
portion of 24 immune cell types between the two groups.
Notably, the key DEGs were positively correlated with the
immune infiltration content, suggesting their important
role in immune regulation in HFpEF. Although, the precise
mechanism of the key DEGs in immune infiltration regula-
tion remains unexplored, targeting them may provide a
promising approach for treating HFpEF.

Our study has certain limitations. First, despite pooling
three different HFpEF datasets, including our dataset, the
total sample size was still relatively small. Therefore, the
findings of the present study need to be confirmed with
larger studies. Second, although an association was
observed between the key DEGs and immune cells, the
exact mechanisms by which these key DEGs modulate the
immune system still require further investigation. More-
over, whether the A-scores or ARDEGs have prognostic
value in HFpEF warrants validation in larger cohorts with
comprehensive clinical data.

In conclusion, our study suggests that ARDEGs may serve
as promising prognostic and predictive biomarkers for
HFpEF and highlight the important role of immune regula-
tion in HFpEF, which might contribute to the identification
of therapeutic targets.
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